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Abstract. A study of the energetics of solids leads to the conclusion that the equation of state 
for all classes of solids in compression can be expressed in terms of a universal function. The 
form of this universal function is determined by scaling experimental compression data for 
measured isotherms of a wide variety of solids. The equation of state is thus known (in the 
absence of phase transitions), if zero-pressure volume and isothermal compression and its 
pressure derivative are known. The discovery described in this paper has two immediate 
consequences: first, despite the well known differences in the microscopic energetics of the 
various classes of solids, there is a single equation of state for all classes in compression; and 
second, a new method is provided for analysing measured isotherms and extrapolating high- 
pressure data from low-pressure (e.g. acoustic) data. 

1. Introduction 

The equation of state (EOS) of a solid ( P ,  V ,  T relation) is fundamentally important in 
basic and applied science [l-71. It depends on the nature of the interatomic interactions 
and thus provides a test of fundamental solid state theories. At the same time, it can be 
used to determine thermodynamic properties. 

Many analytic, semiempirical relations have been proposed to describe the EOS. Such 
proposals have been based on two different approaches. The first attempts to find reliable 
methods of curve fitting using, for example, finite stress-strain relations. This approach 
has been moderately successful in finding fitting forms (such as the Birch-Murnaghan 
equation [8]) and describes the P ,  V ,  T data for a wide variety of solids. The second 
approach has been to propose models based on the rather different energetics of the 
various classes of solids. For example, the EOS of alkali halides has been described by 
the Born-Mayer potential, while the EOS of rare-gas solids has been modeled by the 
Buckingham potential [9]. Consequently the second approach had led to a plethora of 
more or less complicated functional forms. Both approaches are extensively reviewed 
in [ 1-51. 

In this paper following the second approach we will show that this plethora of forms 
is not necessary and that a single form will suffice. This study relieson the recent discovery 
of a universal, scaled, energy relation for covalent and metallic solids. We will show 
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that, despite the rather different features of their energetics, the EOS in compression of 
all classes of solids (metallic, covalent, ionic, van der Waals) can, in the absence of phase 
transitions, be described by a scaled, universal function. Consequently, the two way of 
describing the EOS semi-empirically have culminated in a single relationship. 

The form of the universal relation is not assumedapriori, but is discovered by analysis 
of energetics. The form is then determined by plotting experimental isotherms in a 
simple, model-free way. The resulting curves have the same shape and in fact are linear. 
Consequently, the EOS can be represented by a particularly simple, functional form. 
Alternatively, the form of the EOS can be derived from the universal energy relations. 
Interested readers can find a brief report of this derivation in [lo]. The remaining part 
of this paper is divided into five sections. Here we emphasise an empirical approach. The 
data required as input are the zero-pressure volume, V,(T), isothermal bulk modulus, 
B,(T), and pressure derivative of the isothermal bulk modulus, Bb(T)  = 
(aB/aP),=,,,. Here, T denotes the temperature, and B the isothermal bulk modulus 
at arbitrary P and T. We note that Bo and B ;I can be determined by low-pressure acoustic 
experiments, while V,( T )  is easily measured. 

The discovery of a universal EOS for all classes of solids in compression stems from 
an ongoing study of universal features in the energetics of metals [ll-191. In § 2 we 
review these results and their consequences, previously reported, of a universal EOS for 
zero-temperature metals [15, 161. In § 3 we provide theoretical arguments that the same 
universal form may be expected to describe the EOS of all other classes of solids at non- 
zero temperatures. Section 4 uses the results of § 2 to describe a model-free test of 
universality. This test is then applied to the measured isotherms of van der Waals, ionic, 
covalent, and metallic solids. Section 4 will appear to be repetitive since the same analysis 
must be performed for each class of solid in order to establish our hypothesis. Section 5 
describes the significance of the test of universality used in § 4. Also, expressions are 
given for B( V ,  T )  and (a 2B/a P2)p=o, ,. Section 6 explores the use of the universal relation 
in the analysis of data. Various exceptional cases (such as data which includes a phase 
transition) are highlighted. Finally, the paper is concluded with a summary. 

2. Review of universality for EOS of metals 

Recently it has been shown that the isotherm EOS of metals has a simple, universal form 
[15, 161. This results from the fact that, for metallic sytems, the T = 0 binding energy- 
distance relation can be described to good accuracy by [13,14] 

E(a)  = A E  E*(a*).  (2.1) 

Here E(a)  is the binding energy per atom, A E  scales the energy, a measures the 
separation between atoms, and a* is a scaled separation, 

a* = (a - a o ) / l  (2.2) 

where a, is the equilibrium separation between atoms, and 1 is the scaling length. 
Equation (2.1) has been shown to hold for the adhesion of two metallic half-spaces 
[ l l ,  18,191, chemisorption of gas atoms on metal surfaces [12], and in particular for 
cohesion of bulk metals [13, 141. It has even been used to describe nuclear interaction 
potentials and to predict the equation of state of nuclear matter [20]. 



Universal features of the equation of state of solids 1943 

- 0.2 

- 0.4 

E* 

-0.6 

-0.8 
Figure 1. Universal binding energy 
relation-scaled binding energy 
(E*)  versus scaled separation 
(a*)-for diatomics (0, H i  (mol- 
ecule)), adhesion (0, AI-Zn 
(interface)), chemisorption (U, 
oxygen (chemisorbed)), and co- 

0 2 4 6 

a* hesion ( A ,  MO (bulk)). 

Figures 1 and 2 illustrate the universal shape of the binding energy distance curves. 
Figure 1 (taken from [13]) documents this result for several representative cases: (1) 
H2+ , a diatomic molecule; (2) oxygen chemisorbed on jellium; (3) bimetallic adhesion 
of A1 and Zn; and (4) cohesion of bulk MO. Figure 2 (also taken from [13]) shows the 
cohesive energy as a function of the scaled lattice constant for a variety of metals. The 
full line in these figures is given as an aid to the eye and is expressed below by equation 

For the rest of this section, we will consider the cohesion of bulk metals; that is, we 
use equations (2.1) and (2.2) to describe the energetics of bonding of a bulk metal as a 

(2.12). 
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Figure 2. Universal binding energy 
relation-scaled binding energy 
(E*)  versus scaled separation 
(a*)-for cohesion of metals rang- 
ing from simple metals to transition 
metals: 0, MO; U, K; A ,  Cu; 0, 
Ba; 0, Sm2+; V, Sm3+. 
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function of the scaled lattice constant expanded of compressed. From here on, AE is the 
zero-pressure binding energy per atom (cohesive energy) and 

a* = (rws - YWSE)/l. (2.3) 
Here rws is the average Wigner-Seitz radius and is given by V = 4nr$,, where Vis the 
specific volume per atom-the zero-pressure value of rws is denoted by TWSE. The length 
scale 1 is defined to be 

1 = [AE/(d2E/du2)o]’/2 (2.4) 

1 = (AE/12nrWSEB0)1/2. (2.5) 

and can be rewritten conveniently as 

The zero-temperature, pressure-volume (P,  v> curves of metals have been com- 
putedfrom (2.1), (2.3), and (2.5) and compared with experiment. Good agreement was 
obtained, as discussed in [ 15-17]. We review the derivation below. First, at T = 0 we 
write 

P = -aE/av. (2.6) 
Using the universal form for the energy, we obtain 

P = -(AE/4nrWSEBO)E*’ (a*) .  

The prime indicates the derivative with respect to the argument. Just as E* is a scaled 
energy, E*‘ is a scaled force. By Hooke’s law, we may expect E*’ to be proportional to 
U* for small U * .  Consequently, it is convenient to write 

(2.8) = a*G*(u”) 

Here G*(a*) is a new universal function defined by (2.8) which describes the deviations 
from linearity in the universal force expression. 

From equations ( 2 . 9 ,  (2.7), and (2.8), one can give an expression for G* explicitly 
in terms of the measured isotherms 

G(u*) = -(V/V,)2/3 P(V)/3B, [l - (V/V,) 1’3]. (2.9) 

H(x)  -BOG*(a*). (2. lo) 

H ( x )  = X*P(X)/3(1 - x). (2.11) 

A second, somewhat more convenient function H ( x )  can also be introduced by 

Herex = (V/V0)1’3. Rewriting (2.9) in terms of these definitions yields 

Once universality is assumed (equation (2. l)), it follows that, to this approximation, 
plots of H ( x )  versus x must have the same shape for all metals. 

The results until now followed from the assumption that the energetics could be 
described by some universal function, E*(a*). We have not had to specify the form of 
E*(u*) in deriving (2.9) and (2.11). However, some further progress can be made by 
using an approximation for E” known to be accurate for metals: 

E*(u*) = (1 + a*)e-’*. (2.12) 

One finds that G * ( u * )  = -exp(-a*). If this result is used in (2.10), one finds 
In H ( x )  = In Bo + q ( l  - x) (2.13) 

where 7 = rwsE/l is a constant. Equation (2.13) implies that plots of In H(x)  versus 1 - x 
should be nearly linear. The intercept is In Bo and the slope is y .  
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Equation (2.12) allows us to approximate the P,V curve as 

P = [3B0(1 - x)/x’] exp[q(l - x)]. (2.14) 

The bulk modulus and its pressure derivative can be computed from (2.14). The result 
fixes q in terms of Bh as 

q =$(BA - 1). (2.15) 

Note that in previous papers we have denoted B(, as (dB/dP)T,p=o. 

3. Other classes of solids and non-zero temperatures 

It was shown in [15] and [16] that the zero-temperature equations of state for a variety 
of metals are accurately described by (2.14). Hence plots of In H(x) versus 1 - x should 
be found to be straight lines. In this section we argue that: (i) this result generalises to 
other classes of solids and to finite temperatures, and (ii) equations of state for solids 
can be usefully described by a universal function. 

On the face of it, it seems implausible that isothermal P ,  Vcurves for ionic, covalent, 
metallic, and van der Waals solids would be the same. The energetics of these solids are 
rather different. For example, in metals the attractive force between atoms is due 
primarily to electron overlap, whereas the attractive force between atoms in ionic crystals 
is the long-range Coulomb interaction, while van der Waals solids are held together by 
the long-range van der Waals interaction. Consequently, one might think that the 
isothermal P ,  V curves of each class of solids would have a distinct form. In fact, such 
reasoning has led to a myriad of semi-empirical formulas for the P ,  Vcurves of different 
classes of solids [ 1-51. 

We will now examine the reasons why such a variety of fitting forms is not necessary. 
Consider an ionic crystal. The attraction is primarily provided by the long-range Cou- 
lomb force. The repulsive force that stabilises the crystal against collapse arises from the 
kinetic energy due to the overlap of the ion’s electron clouds. The essential point is that 
this repulsive force varies much more rapidly than the attractive forces. Consequently, 
we have the following situation. In tension the long-range force contributes almost all 
of the binding energy. Note that the pressure is the derivative of the binding energy. 
However, although the short-range and long-range terms contribute nearly equally to 
the pressure near equilibrium, the rapid variation of the repulsive forces in the hard core 
implies that the short-range forces dominate the total pressure in compression. 

Note that the observation of universality concerns the shape of the H(x) curve, which 
in turn depends on the shape of the P ,  V curve. Since the repulsive and attractive 
contributions to P are equal at Vo,  we may expect the rapidly growing repulsive con- 
tribution to dominate the shape of H(x) for compression. 

The same arguments apply more so to van der Waals solids, which have a filled shell 
interactions as do ionic solids. The long-range interaction is weaker in rare-gas solids 
than in ionic solids. Gordon and Kim [21] have found that, in the region of equilibrium, 
most of the inter-particle potential of rare-gas solids (including the attractive part) can 
be treated by the local-density electron-gas theory commonly used in the study of metals. 
Consequently, their energetics may be expected to be similar to those of metals in the 
region of compression. 
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The plausibility arguments just given rely on the assumption of zero temperature. 
At finite temperatures 

P =  -(aF(T,V)/aV),  (3.1) 

where F is the Helmholtz free energy. By definition, the right-hand side of (3.1) is 
rewritten 

P =  -dE(V)/dV+ P"(T ,  V). ( 3 4  

Here E is the T = 0 ground-state energy and P* is defined as the thermal pressure. For 
high temperatures, P*(T ,  V) is not negligible. However, it is known in general that 
P*( T ,  V) is slowly varying function of Vrelative to -d E(  V)/d V. Thus one might expect 
that the form of -d E/d V and P( T ,  V) would be similar; however, since P*( T ,  V) is not 
negligible, it will shift the equilibrium point so that the temperature dependence is 
contained in Vo(T), Bo(T)  and Bb(T) .  That is, the shape of the isotherm as scaled by 
these three parameters is the same as the T = 0 isotherm. 

To demonstrate this point quantitatively, we added a volume-independent P*( T )  to 
pressure-volume data [22] for a caesium sufficient to increase or decrease Vo( T )  by up 
to 4%. This thermal volume change and corresponding change in thermal pressure is 
larger than one could actually encounter in solid caesium. Nevertheless, we found that 
the linearity of plots of In H(V, T> versus 1 - (V/Vo( T))*I3  was virtually unchanged by 
the addition of P*( T ) .  R-values, indicating quality of least-mean-square linear fit (see 
equation (4.1) below), varied from 0.99995 for the original experimental data to 0.99992 
with the largest added P*(T) .  The effect of the added Ph(T) was found in changes of 
corresponding V,(T) ,  B o ( T ) ,  and (8B(T)/8P)T,P=0,  however. For a more complete 
discussion of temperature effects, see [23]. 

4. Tests of universality 

In this section we provide empirical evidence that the EOS of solids can be usefully 
described in terms of a single universal function. Since we are attempting to establish 
our hypothesis for a wide variety of experimental data, it will of necessity be repetitious. 
We start with equation (2.11) as the definition of H ( x ) .  H ( x )  can be evaluated entirely 
in terms of measurable quantities for any solid (P(  V, T )  and x( T )  = (V( T)/Vo( T)) l I3) .  
The experimental isotherms are used to compute and plot In H ( x )  versus 1 - x for a wide 
variety of solids. All of the resulting curves will be found to be straight lines to high 
accuracy. Consequently, the EOS is well described for all classes of solids by the universal 
expression given in (2.14). 

We will plot In H ( x )  versus 1 - x for each class of solids sequentially. In each case 
the resulting curves are fitted to a straight line. The fitting parameters B o ( T )  and 
Bb(T)  are determined and reported. In addition, a confidence (correlation) factor for 
the quality of the data fitted to a line is reported. 

Our results are grouped as follows. First, in 8 4.1, we analyse solid H2 and DZ. These 
data represent by far the greatest compressions available to us, the smallest value 
reported being 20% of the zero-pressure volume. Hence they provide a stringent test. 
In 8 4.2 we discuss the compression of alkali metals, using the highly precise static-press 
measurements of [22,24-301. Next, shock wave data is analysed in 9 4.3 for a variety of 
elemental metals and alloys. Ionic crystals are analysed in 0 4.4, with special attention 
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paid to NaCl due to its use as a high-pressure standard. In § 4.5 rare-gas solids are 
analysed, using mainly the static-press data of [25,29]. Finally, in § 4.6, results are 
presented for some polymers and amorphous solids. 

We start by fitting In H(x) versus 1 - x to a line. We use the correlation coefficient 
[31] to quantitatively define the degree of linearity. The definition of the correlation 
coefficient is 

Here yDATA are the plotted values of In H(x), p is the average of the N values of 
yDATA, and yYIT are the values taken from the fitting line. Note that the values of 1 - x 
are taken to be equally spaced. A correlation coefficient of unity indicates a perfect fit 
to a straight line. 

As previously discussed, the linear fitting parameters provide an estimate for Bo and 
BI,. These values are reported for each substance analysed in this section. The reader is 
cautioned that these numbers are reported only to define our fits: they are sometimes 
taken from old and not always completely accurate P, Vdata. In particular, they should 
not be preferred to ultrasonic measurements of the same quantities. Deviations of Bo 
and BI, from ultrasonic measurements should, for the most part, reflect the approximate 
nature of our analysis and the quality of the data analysed. 

Our selection of the data is idiosyncratic. We have for the most part preferred data 
that are part of either compendia or systematic studies of a family of elements. Studies 
of single elements have generally been omitted. Due to the volume of data, the entire 
set of the compendia of shock wave data has not been presented. Rather, we have 
selected about one-third of the elemental metals for presentation and have omitted a 
few of the alkali halides. The basis for selection was clarity of presentation since line 
crossings on the appropriate plot obscured their content. With few exceptions the data 
could be fitted by straight lines with high (>0.999) R-values. 

4.1. Hydrogen and deuterium 

Hydrogen is one of the most compressible elemental solids. The possible transition to a 
metallic state has prompted considerable effort to measure the P ,  V curve to high 
compressions. We make use of two experimental studies. The first, by Anderson and 
Swenson [29], reports the isotherm at 4.2 K to roughly 50% of the original volume. The 
second, by Van Straaten and co-workers [2], reports compressions to 20% of the original 
volume, also at 4.2 K. The resulting values of In Hare  plotted versus (1 - x )  in figure 3. 
The dots correspond to the results of [29], while the crosses denote the results of [ 2 ] .  As 
can be seen, both sets of data lie closely on a common straight line. From the data of 
[29], we infer Bo = 1.66 x lo8 Pa for H2 and Bo = 3.099 x lo8 Pa for D,; also BI, = 7.33 
for H2 and BI, = 7.07 for D2. The correlation for the fit was R = 0.9999 for both D2 and 
H2. For data from [2] we find Bo = 1.62 X lo8 Pa, BI, = 7.51, and R = 0.9999 for H2 
while Bo = 3.019 X lo8 Pa, B& = 7.19, and R = 0.9997 for D2. Values of Bo, BA, and R 
for hydrogen are listed in table 4 below, with the rare gas elements, for easy reference. 
The fact that the In H(x) plot is a straight line over compression by a factor of five is a 
striking confirmation that equation (2.10) is not confined to metals. 
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4.2. Alkali metals 

Recently Anderson and Swenson [22,28] completed a systematic, precise study of the 
compression isotherms for Li, Na, K, Rb, and Cs. Tabular resultsfor P ,  Vwere reported 
for pressures up to 20 kbar for temperatures of T = 4.2 K and T = 295 K (294 K for Li). 

24 

23 

X 
c 
d 

22 

0.1 0.2 0.3 

l-x 

Figure 3. In H (from equation 
(2.13)) versus (1 - x )  where x = 
(V/Vo)''3 for hydrogen (curve A) 
and deuterium (curve B) to high 
comperessions using data from [29] 
and [2] ( x ) .  

. L i  (294) . ~ i ( 4 ) .  - * 
* .  . .  . .  . NaS4)  . .  

* , Na(295) 

The maximum compression for the alkalis was VIVO L- 0.55 for rubidium. For the other 
alkali metals, the maximum compression ranged to 0.85 for lithium. 

Figure 4 shows plots of In H ( x )  versus 1 - x for those elements. The data approximate 
straight lines in all cases, at 295 K as well as 4.12 K. Upon fitting the plots to a straight 
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Table 1. Curve-fitting parameters Bo and BA from equation (2.13) for the alkali metals 

Material BO(lO1OPa) BA R (V/VO)lll," 

Li (4.2 K) 
Li (294 K) 
Na (4.2 K) 
Na (295 K) 
K (4.2 K) 
K (295 K) 
Rb (4.2 K) 
Rb (295 K) 
Cs (4.2 K) 
Cs (295 K) 

1.25 
1.16 
0.72 
0.59 
0.37 
0.29 
0.29 
0.23 
0.21 
0.17 

3.8 
3.6 
4.4 
4.8 
4.4 
4.7 
4.3 
4.6 
3.9 
4.1 

0.9999 
0.9999 
0.9986 
0.9879 
0.9999 
0.9999 
0.9998 
0.9999 
0.9994 
0.9997 

0.85 
0.72 
0.70 
0.70 
0.60 
0.60 
0.55 
0.55 
0.60 
0.60 

~ I ", 

I -x  theshockwavedataof[32]and[33f 

line, we obtain the values for Bo, BA, and R given in table 1. The values of Bo obtained 
in our analysis are in good agreement with those of [22] and [28]. Our values of BA appear 
to be larger by a small amount. Note as we asserted earlier the shapes of the isotherms 
are unaffected by temperature. 

4.3. Other metals: shock wave data 

Isothermal P ,  Vcurves have been estimated for many solids from shock wave measure- 
ments. Two useful compendia of these results have been given in [32,33] as extrapolated 
to T = 0 K, and in [34] as extrapolated to 298 K. 

Figures 5 and 6 show the results of plotting In H ( x )  for a selection of the elemental 
metals and alloys reported by McQueen and co-workers (see [32], p 294 and especially 
p 53, [33]). In all cases, the linearity of In H ( x )  is evident. Note that figure 6 supports the 
finding in [15] that universality applies to commercial alloys as well as pure elemental 
metals. Figure 7 reports In H ( x )  for a selection of the shock wave data of [34] for metals. 
There is some scatter in the data at small compressions. The origin of this scatter is 
unknown but may be due to a lack of precision in the extrapolated results for low 
pressures. We note that, in those cases where scatter occurs, extracting Bo and B(, by a 
limiting process as P+ 0 would become difficult. However, this problem is minimised 
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Figure 6. In H (from equation 
(2.13)) versus (1 - x )  where x = 
( V/Vo)'/3for several alloysusing the 
shock wave data of [32] and [33]. 

by our method, which provides a global fit to the data. Aside from the scatter for small 
compressions, the plots of In H ( x )  are essentially linear. Values of the fitting parameters, 
as well as R for the data in this subsection. are found in table 2 .  

4.4. Ionic crystals 

Sodium chloride plays a somewhat singular role among the alkali halides, in that it has 
long been used as a pressure standard. Consequently its P ,  Vrelation is fairly well known 
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Table 2. Curve-fitting parameters Bo and BA from equation (2.13) for various metals and 
alloys. 

Ag" 
Pta 
cos 
Al" 
Nb" 
Cda 
Be" 

Ca" 
Nba 
Moa 

1018 steel" 
A1 2024" 
304 stainless steela 

Ptb 
Mob 
Crb 
Beb 
Zrb 

ma 

Mgb 

1.045 
2.798 
1.969 
0.764 
1.694 
0.494 
1.200 
0.344 
0.195 
1.700 
2.662 

1.063 
0.798 
1.662 

2.775 
2.685 
1.887 
1.192 
0.9294 
0.3433 

6.0 
5.3 
4.3 
4.7 
3.9 
6.1 
3.6 
5.1 
2.5 
3.9 
4.1 

7.1 
4.5 
5.3 

5.4 
4.0 
5.5 
3.5 
3.0 
4.6 

0.9892 
0.998 
0.996 
0.999 
0.992 
0.9996 
0.999 
0.9989 
0.9982 
0.9999 
0.9945 

0.997 
0.9996 
0.9995 

0.9997 
0.9999 
0.9994 
0.9999 
1 
0.9997 

0.62 
0.73 
0.73 
0.66 
0.73 
0.61 
0.70 
0.66 
0.47 
0.61 
0.53 

0.61 
0.60 
0.67 

0.69 
0.68 
0.73 
0.68 
0.82 
0.61 

a [32,33]. 
[34]. 

for compressions up to the phase transition at VIVO = 0.64. Figure 8 shows the results 
of plotting P versus (VIVO), computed from the measured isotherms of several groups 
[35-40]. Our fit (table 3) to this compilation of data, using In Hfor  the isotherm of [32], 
yields values of Bo = 2.36 X lolo Pa and BA = 5.1. These values are in good agreement 
with ultrasonic measurements of Bo = 2.34 X lo1' Pa and BA = 5.35 [14]. Isotherms 
( T  = 298 K) for most of the other alkali halides were taken from the compendium of 
shock wave results in [34]. 

Figure 9 shows the plot of In H ( x )  versus (1 - x )  for alkali halides. All of the results 
can clearly be fitted by a straight line. However, the plots for RbBr and RbCl show a 
systematic upward curvature, though the R-values indicate a good linear fit. The origin 
of this curvature is unknown. Isotherms ( T  = 0 K) for S ic ,  WC, and MgO were taken 
from the shock wave data of [32,33]. The resulting In H ( x )  are plotted in figure 10. The 
linearity of the curves is again clear. The fitting parameters, Bo and Bh, as well as R, are 
given in table 3. 

4.5. Rare-gas solids 

Isothermal compression data were taken from [29] and [30]. Results for Kr, Ar, and Ne 
are reported at 4.2 K and one other temperature. Results were not available for He. 
Figure 11 shows the results of plotting In H(x)  for these solids. The fit to a straight line 
is again evident. Results for Bo, BA, and R are given Table 4. 

Xenon in particular has been studied to somewhat higher compressions using 
diamond anvil cell techniques. Figure 12 shows a plot of data from [41]. The lower- 
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Figure 8. A comparison of pressure versus reduced volume (VIVO) between the present 
Murnaghan [43] and Birch equation [8] with NaCl experimental data [35]-[40] for Bo and 
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Table 3. Curve-fitting parameters Bo and BA from equation (2.13) for the alkali halides and 
selected covalent solids. 
~~~~~~ ~ ~ 

Substance Bo (1O"'Pa) BA R (V/VO),,. 

MgO 15.17 4.8 0.9996 0.70 
S ic  20.11 2.6 0.9997 0.70 
WC 36.37 4.5 0.9999 0.75 
KF 6.245 5.0 0.9996 0.61 
NaF 4.687 3.9 0.996 0.82 
Lick 3.268 4.1 0.9991 0.71 
NaCl 2.360 5.1 0.9993 0.70 
LiBr 2.189 5.5 0.9997 0.65 
NaBr 2.083 4.4 0.9996 0.64 
NaI 1.981 4.4 0.9999 0.61 
RbF 1.487 4.9 0.9998 0.61 
KI 0.931 4.7 0.9996 0.57 
RbBr 0.757 5.2 0.9993 0.58 
RbCl 0.568 6.0 0.9996 0.60 
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Figure 10. ln H (from equation (2.13)) 
versus (1 - x )  where x = ( V/V0)1/3 for 
WC, MgO, and Sic for the O K  iso- 
therms of [32] and [33]. 
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Table 4. Curve-fitting parameters Bo and BA from equation (2.13) for the rare gas solids and 
hydrogen. 

Ne (4.2 K) 
Ne (19.9 K) 
Kr (4.2 K) 
Kr (77 K) 
Ar (4.2 K) 
Ar (77 K) 
Xe (4.2 K) 
Xe (159 K) 
H2 
D2 
HZ 
D2 

1.080 
0.816 
3.308 
2.119 
2.834 
1.411 
3.612 
1.484 
0.166 
0.309 
0.162 
0.302 

- 
8.4 
8.9 
7.8 
8.7 
7.8 
9.3 
7.9 
9.5 
7.3 
7.1 
7.5 
7.2 

0.9999 
0.9999 
0.999 98 
0.9998 
0.999 98 
0.99996 
0.99997 
0.99995 
0.9999 
0.9999 
0.9999 
0.9997 

0.68 
0.67 
0.79 
0.76 
0.78 
0.73 
0.80 
0.73 
0.2 
0.2 
0.2 
0.2 
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Figure 11. In H (from equation 
(2.13)) versus (1 -1) where x = 
(V/Vn)'13 for rare gas solids for 
several temperatures (given in K 
against the element symbol); data 
from [29] and [30]. 
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Figure 12. In H (from equation 
(2.13)) versus (1-x) where x = 
(V/Vn)''3 for xenon at high com- 
pression; data from [41]. 
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pressure data of [29] are also reported. The experimental results of [41], provided in 
table form by Professor Asaumi, have not been smoothed and are rather scattered. They 
are consistent with the linearity hypothesis but are unable to reveal small deviations 
from it. 

4.6.  Some polymers and a glass 

Contrary to our general procedures, the results in this subsection definitely represent a 
selection of the data. Most of the data on polymers (reported in [34] and [42]) had one 
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Table 5. Curve-fitting parameters Bo and BA from equation (2.13) for some plastics and 
amorphous solids. 

Material Bo(lO'Pa) Bj, R ( VlVdmin 

Polystyrene 3.980 10.1 0.9977 0.76 
Silicone 160 1.202 19.0 0.9985 0.76 
Glass A 29.09 6.2 0.9989 0.83 
Nylon 6 6  5.824 10.1 0.9994 0.80 
Hevea gum 2.598 12.1 0.9988 0.79 
Melmac 404 8.897 8.7 0.991 0.82 

or more phase transitions in the region of interest. The data given here are those for 
which straight lines were obtained. The general utility of our analysis for this group of 
solids remains unknown. Nonetheless, it seemed so surprising to us, given the complex 
structure of polymers, that the analysis would work at all for these substances, that we 
decided to include them in our report. 

The isotherms were taken from the results of Bridgman as compiled in [34]. We note 
that hevea gum is natural rubber. The resulting plots of In H ( x )  are shown in figure 13. 
The fitting parameters and correlation factor were given in table 5. 

5. Is universality trivial? 

In the last section, we plotted the isotherms of many solids as In H versus 1 - x .  The 
resulting nearly straight lines were taken as evidence for universality. In this section, we 
discuss some questions concerning the validity of this inference in light of the data. 

The basic result is the observation that one can predict isotherms in the absence of 
phase transitions, given Bo and Bh. For small compressions, this statement is trivial, 
since P can be expressed as a power-series expansion whose lowest-order coefficients 
are fixed by Bo and Bh . If the universal EOS is to be non-trivial, it must make accurate 
predictions where the truncated power series fails. 
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The widely used Murnaghan EOS [43] is a power series approach which uses only Bo 
and BA. Hence we should compare the universal and Murnaghan EOS with experiment. 

The Murnaghan EOS is derived by representing B as apower series in Pand truncating 
after the second term, 

B(P) = Bo + B(, P. (5.1) 

Equation (5.1) can be integrated for P using 

B = -v(aP/av)T. 

P(X, T )  = B , ( T ) ( B ; , ( T ) ) - ' ( ~ - ~ ~ ~ ( ~ )  - I). 
The result is the Murnaghan EOS 

(5.3) 

From equations (5.1)-(5.3), it is clear that the Murnaghan EOS serves as a convenient test 
as to how well a truncated power series expression can represent isothermal compression 
data. 

The universal EOS can be used to predict the variation in B as a function of com- 
pression. Using (2.4) and (5.2) one obtains 

This expression can be compared with (5.1) using (5.3). 
Anderson and Swenson [29] have reported P(v) and B(V) for compressions greater 

than 50% for H2 at T = 4.2 K. In figure 14(a) we plot their results together with pre- 
dictions of the universal and Murnaghan EOS [43]. The values of Bo = 1.7 x lo9 Pa and 
B(, = 7 are taken from [29]. As can be seen, the universal expression is very markedly 
superior to the Murnaghan expression for compressions, VIVO, greater than 0.80. Figure 
14(b) shows a similar result for the bulk modulus. A similar result is obtained for NaCl 
(figure 8). In this case, Bo = 2.34 X lo1', and B(, = 5.35 were taken from ultrasonic 
experiments. In this case we compare also to the Birch equation [8] another two par- 
ameters (Bo ,  Bb) widely used in the EOS literature. As is shown in figure 8, the universal 
EOS is in good agreement while the Murnaghan expression again deviates for com- 
pressions greater than 0.80. Similar results were obtained for each class of solid. The 
Birch equation has a better agreement than the Murnaghan and is slightly worse than 
the present model. 

Consequently, we conclude that the universal EOS accurately includes the non-linear 
physics (WRT (5.1)). Note that we do not imply by these comparisons that the universal 
relation is superior to all other ways of fitting isothermal P ,  V curves; rather, we have 
shown that it includes the non-linear physics with sufficient accuracy to be useful for data 
analysis and data extrapolation (e.g., the NaCl data just discussed) purposes. Most 
importantly, we have shown that there is a universal form for the EOS of all classes of 
solid. 

In the paper we have primarily compared the Murnaghan and universal equations of 
state for the reasons given above. However, we remark that recent work [44] shows that 
the universal EOS is a more accurate representation of the data for the entire range at 
Bo,  B(, andx encountered experimentally than the Birch equation [8], the work reported, 
in [45] as well as some more recent work [46]. 

The In H curves of 9 4 are a rather indirect way of checking if equation (2.14) can 
describe experimental isotherms. Figure 15(a-d) shows pressure-reduced volume plots 
of experimental isotherms along with curve fits to the universal EOS fit for natural rubber 
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Figure 14. A comparison for hydro- 
gen between the Murnaghan 
expression ([43], broken curve) and 
the present model (universal 
relation, full curve) showing the 
effects of non-linear terms. Bo and 
BA for theoretical curves were 
obtainedfrom [30] (a) Pressurever- 
susreducedvolume, VIVO, ( b )  Bulk 
modulus versus reduced volume, 
VIVO, (Experimental data: 0, [30], 
x ,  PI. 

(hevea gum), Cs,  MO, and Xe. The fits are uniformly excellent. The fitting parameters 
are taken from Q 4. 

Since the universal EOS accurately contains the non-linear portions of the EOS, we 
can use it to examine these non-linearities. Figure 16 shows a plot of B/Bo versus P/Bo 
for the hydrogen data of [29]. The broken line is the linear extrapolation (equation 
(5.1)). The full line represents the universal EOS and does a good job of representing the 
data up to compressions as large as 0.45. Finally, equations (5.4) and (5.2) can be used 
to calculate the higher-pressure derivatives of B. One finds explicitly for the second 
derivative 

A discussion of higher-order derivatives as well as a general analysis of the universal EOS 
and its application to other physical properties can be found in [47]. 
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Figure 15. Pressure versus reduced volume plots of experimental data and a fit to the present 
model (equation (2.14)) for (a)  natural rubber (hevea gum) [32], [34]; ( b )  Cs [22], [28]; (c) 
MO [32], [33] and (d) Xe [31]. 

6. Universality and data analysis 

The technique of plotting isotherms as In H ( x )  versus 1 - x illuminates the common 
features of the equation of state of solids. As we discuss below, this method is particularly 
sensitive to certain errors in the data. In addition, by concentrating on In H ( x )  and the 
inter-particle spacing (which is proportional to x), one treats the low- and high-pressure 
data on an equal footing. Consequently, it seems to us that, for many purposes, plots of 
the isotherm as In H ( x )  versus 1 - x might become a standard method of data analysis. 

First, we remark that the analytic from of (2.14) was introduced as an approximate 
representation. For sufficiently high pressures and sufficiently accurate measurements 
non-linearities in plots of In H versus 1 - x may become apparent. In particular, one 
might find a small systematic curvature in the data at large 1 - x. If the deviations 
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Figure 16. A plot of the bulk modu- 
lus (BIB,) versus pressure (P/Bo)  
for the hydrogen data of [29] (open 
circles) showing the nonlinear con- 
tributions by comparing the present 
model (full curve) with the Mur- 
naghan equation [43] (brokenline). 
Bo and BA were obtained by fitting 
toequation (2.14). The arrowsindi- 
cate values of VIVO. 

from linearity are smoothly varying, we recommend fitting the resulting curve with a 
polynomial, i.e. 

In N(x)  = In Bo + q(1 - x )  + p(1 - x)* + y(1 - x ) ~  + . . . . (6.1) 

(6.2) 

The corresponding pressure-volume curve is 

P ( x )  = [3Bo(l - x)/xz] exp[q(l - x )  + p(1 - x)' + y(1 - x ) ~  + . . . I .  
We note that j3 appears in the calculation of the second pressure derivative of the bulk 
modulus at zero pressure while y appears in the third. Finally, the results of the last 
section indicate that j3 and y in most cases are small and the determination of their values 
will require very careful measurements over a wide range of compression. One exception 
is a U-MO alloy that is discussed below. 

Various forms of error are clearly emphasised with In Hplots. For example, in figure 
7 the data tend to scatter for small 1 - x ,  and figure 12 shows unsmoothed data for xenon. 
The lack of any systematic trend in the scatter in figure 7 indicates that it is likely due to 
lack of sufficient accuracy in the reported isotherms at low compressions. An extensive 
data analysis showing these effects for materials of geophysical interest is presented in 

A well known difficulty in obtaining reliable isotherms is the determination of the 
zero-pressure volume, Vo. Such errors leave a very clear signature on a In Hplot , namely, 
the plot becomes curved for small 1 - x .  Figure 17 shows the results of errors of k 1 and 
?5% in Vo using values of Bo and BA for NaCl [14]. As an example, data from the 
literature for NaCl which has a curved In H plot for small 1 - x are presented in figure 
18. This curvature is explained as an error in Vo. Decker [49] predicted high-temperature 
isotherms for NaCl based on measured values at 25 "C. In these extrapolations, the value 
of Vo at 25 "C is used at the higher temperatures. His extrapolated isotherm for T = 
500 "C is shown in figure 18. The curvature suggests that the value Vo in computing the 
isotherm is too small. We have replotted these data in the insert with a value for Vo that 

[481. 
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V,, theequilibriumvolume, onln H 
plots using Bo and Bb from ultra- 
sonic data for NaCl[4]. 

0.04 0.08 0.12 0.16 

........... ........... Figure 18. A plot of In H (from ................................. equation (2.13)) versus (1 - x )  
wherex = (V/Vo)1'30f a500"Ciso- 

1 -x Vb = 1.068 V,,. 

removes the curvature (-6.8%) (comparing with the value at the thermal expansion for 
NaCl at 500 "C in the literature +6.8% [50]); we see that the curvature can be plausibly 
explained as resulting from the use of the value of Vo at 25 "C rather than that at 500 "C. 
We should point out that a second type of error is possible. If V, is known correctly but 
AV = Vo - Vis systematically in error by afixedpercentage, thenno significant signature 
is found in the In H plot. Consequently, small errors will propagate in determining Bo 
and Bh. 

Our basic observation is that In Hplots are linear in the absence of phase transitions. 
It is of considerable interest for purposes of data analysis to show a case where a phase 
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Figure 19. A plot of I n H  (from 
equation (2.13)) versus (1 - x )  
where x = (V/V,)’” for phospho- 
rous [40], [42] showing the effects 
of a phase change. 

Figure 20. A plot of In H (from 
equation (2.13)) versus (1 - x )  
where x = (V/V0)’’3 for a U-MO 
alloy [32] isotherm showing a cur- 
vature which cannot be explained 
in the present model. 
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transition does occur. In figure 19 the In H plot is shown for phosphorous. There is an 
abrupt, discontinuous change in the curve at the 1 - x value, which marks a phase 
transition. Jakobson and Vinet have applied this analysis with success to solidification 
transformations in liquid lubricants at elevated pressures [51]. 

Figure 20 shows a In Hplot of U-Mo alloy [32] where the isotherm was inferred from 
shock wave data. There is a definite curvature in the data at large 1 - x .  This curvature 
cannot be explained by an incorrect Vo,  which introduces curvature only at small 1 - x .  
The origin of the curvature is unknown. However, one possibility is that a continuous 
change in the electronic ground state of the alloy is occurring. 

As discussed earlier, the significance of the linearity of In H plots can be assessed by 
comparing them to the results of using the Murnaghan EOS. Another way of assessing 
the universal EOS is to use them to extract Bo and Bh for a typical isotherm. The 
Murnaghan EOS is designed to be most accurate at low pressures. Consequently, we have 
extracted Bo and BA using the two different methods with a variable number of data 
points. Higher pressures are included as the number of points increases. The results are 
shown in table 6 for NaC1. As can be seen, the values of Bo and Bh extracted from the 
In H plots are almost constant as the number of points increases. More importantly, 
there are in good agreement with the measured ultrasonic values. On the other hand, 
the values of Bo and BA extracted using the Murnaghan EOS vary with the number of 
data points. For a small number of points (low-pressure data), the values of Bo and BA 
extracted using Murnaghan’s EOS agree well with experiment. For more points, the 
agreement becomes progressively poorer. Consequently, even in those cases where the 
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Table 6.  Comparison of fitting parameters between present EOS and the Murnaghan model 
as a function of number of points used in fitting for NaCI. 

~~ ~ 

Number Present Murnaghan 
of 
points Bo (1O'O Pa) BA Bo (10" Pa) BA 

8 2.36 5.16 2.37 4.86 
15 2.36 5.03 2.38 4.67 
25 2.36 5.03 2.38 4.53 
45 2.36 5.08 2.44 4.27 
69 2.35 5.15 2.54 4.00 

Murnaghan EOS can be fit to a broad range of data, the resulting determinations of Bo 
and BA may be expected to yield values that disagree with low-pressure values, whereas 
the universal EOS allows a stable determination of Bo and BA using the entire range of 
measured data. 

7. Summary 

It has been shown in this paper that the EOS of solids can be expressed in terms of a 
universal function. It was first argued on theoretical grounds that such a universal relation 
ought to exist. Next the universal relation was exhibited and its form determined from 
the measured isotherms for many solids. Finally, it was suggested that the universal 
method might provide a potentially suitable basis for data analysis. 
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